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Abstract
Background: mRNA translation involves simultaneous movement of multiple ribosomes on the mRNA and is also
subject to regulatory mechanisms at different stages. Translation can be described by various codon-based models,
including ODE, TASEP, and Petri net models. Although such models have been extensively used, the overlap and
differences between these models and the implications of the assumptions of each model has not been
systematically elucidated. The selection of the most appropriate modelling framework, and the most appropriate way
to develop coarse-grained/fine-grained models in different contexts is not clear.

Results: We systematically analyze and compare how different modelling methodologies can be used to describe
translation. We define various statistically equivalent codon-based simulation algorithms and analyze the importance
of the update rule in determining the steady state, an aspect often neglected. Then a novel probabilistic Boolean
network (PBN) model is proposed for modelling translation, which enjoys an exact numerical solution. This solution
matches those of numerical simulation from other methods and acts as a complementary tool to analytical
approximations and simulations. The advantages and limitations of various codon-based models are compared, and
illustrated by examples with real biological complexities such as slow codons, premature termination and feedback
regulation. Our studies reveal that while different models gives broadly similiar trends in many cases, important
differences also arise and can be clearly seen, in the dependence of the translation rate on different parameters.
Furthermore, the update rule affects the steady state solution.

Conclusions: The codon-based models are based on different levels of abstraction. Our analysis suggests that a
multiple model approach to understanding translation allows one to ascertain which aspects of the conclusions are
robust with respect to the choice of modelling methodology, and when (and why) important differences may arise.
This approach also allows for an optimal use of analysis tools, which is especially important when additional
complexities or regulatory mechanisms are included. This approach can provide a robust platform for dissecting
translation, and results in an improved predictive framework for applications in systems and synthetic biology.

Keywords: mRNA translation, Modelling methodology, Probabilistic Boolean network, Multiple-model methodology,
Hybrid modelling

Background
mRNA translation is a ubiquitous process seen in almost
all biological systems. In this process, the genetic codons
are translated from mRNA to protein by ribosome
translocation, after the genetic information contained in
DNA is transcribed to the mRNA. The mRNA translation
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process involves three main players: the mRNA (genetic
template), the ribosome (assembly machinery), and the
aminoacyl transfer RNAs (aa-tRNAs), and is conceptu-
ally divided into three stages: initiation, elongation and
termination. Specifically, the ribosome first attaches to
the mRNA (initiation), reads the mRNA codon by codon
(from the 5’ end of the mRNA to the 3’ end), recruits the
appropriate aa-tRNA and knits the latest amino acid into
the nascent peptide chain, releases the discharged tRNA
(elongation), and finally releases the completed protein
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from the mRNA when the ribosome reaches the end of
the mRNA (termination) [1]. mRNA translation follows
broadly this same pattern in bacteria and eukaryotes with
some differences in regulatory mechanisms.

Extensive studies on the mechanisms of mRNA transla-
tion have been reported and draw on multiple approaches
and tools such as experimental cell biology, bioinformat-
ics, theoretical and computational biology, and recently
systems and synthetic biology [2-9]. However, even
though the fundamental mechanisms underlying mRNA
translation are relatively clear, a number of detailed regu-
latory mechanisms are only now being uncovered, the full
understanding of which will require an interplay between
experiments and modelling. Therefore, to elucidate the
mechanism and functions of mRNA translation, a thor-
ough, systems-level understanding is necessary, which
consequently requires well-defined quantitative models.
In addition, the understanding obtained from these quan-
titative models provides an important foundation for syn-
thetic biology investigations [10-15].

The mathematical modelling of mRNA translation has
a long history, and enjoys renewed interest in recent
years with the development of systems and synthetic
biology [16-28]. Models for mRNA translation are intro-
duced with different formulations at various levels of
abstraction, and can be divided into, roughly speaking,
the ordinary differential equations (ODEs) based, and the
Totally Asymmetric Simple Exclusion Process (TASEP)
type models [29-31].

mRNA translation is the outcome of a number of tran-
sitions (which may be conceptualized as reactions), which
can be typically modelled as a set of ODEs [32-39].
Such an ODE-based approach benefits from the exten-
sive modelling and analysis tools available for ODEs. The
ODE-based model usually treats each elongation step as
one ODE (possibly multiple ODEs since each elongation
step is the outcome of the interaction of multiple players
including the mRNA, the aa-tRNA and several elongation
factors [40]), and then the protein translation process is
described in a comprehensive fashion [33,35]. However,
the ODE-based model does not reflect some of the unique
features of mRNA translation, that is, multiple ribosomes
on an mRNA cannot simultaneously occupy one codon.
As a result, in spite of their utility, the ODE-based models
are not necessarily the default choice for modelling mRNA
translation, although they are the dominant approaches
in modelling other bioprocess such as gene transcrip-
tion, signal transduction [41-43]. However, since mRNA
translation primarily involves the ribosome movement
along the mRNA, it can in many cases be studied with-
out considering the detailed biochemical reactions/sub-
processes. This simplified transportation problem can
thus be modelled with TASEP, a model typically used in
non-equilibrium physics [17,23,44-48], to quantitatively

understand the particle transport in a one-dimensional
lattice. Though simplified, the TASEP-based models have
been used for obtaining such steady state information as
the average occupancy of each codon on the mRNA, the
mRNA translation rate, which are key in understanding
mRNA translation. Finally, though not often seen, other
methodologies exist for modelling mRNA translation, for
example, a simplified deterministic Petri net based model
which regards the initiation, elongation and termination
events in mRNA translation as transitions in a timed Petri
net [49], and a simplified version of TASEP named “ribo-
some flow model” where the codons on the mRNA are
coarse-grained into larger segments [50,51].

As far as the whole process of mRNA translation is con-
cerned, codon-based modelling, i.e., models that include
the ribosome dynamics at each codon on the mRNA,
is necessary and desirable. All these models, the ODE-
based, the TASEP based, and the Petri net based, can
be used in this way, but with different advantages and
disadvantages. It is thus necessary to examine all these
modelling methodologies, for the purpose of finding the
appropriate modelling methodology to address specific
questions regarding translation and translation regula-
tion. In this work we examine and compare codon based
stochastic models, ODE models and Petri net models.
We try to rigorously define the codon-based models and
the related simulation algorithms, clarify different update
rules implicitly assumed in these models. We also pro-
pose a novel probabilistic Boolean network (PBN) based
model and compare all these methodologies. Finally, we
examine how these models can be used for situations
which involve additional complexities and how multiple
methodologies can help us better understand the mRNA
translation process. Taken together, this analysis provides
a systematic modelling platform, for use in understanding
the translation process, in multiple contexts.

Results and discussions
We present our analysis in the following sequence: 1) the
definition of codon-based models and an analysis of the
simulation algorithms; 2) the effect of the update rules
in codon-based models; 3) a new PBN model for mRNA
translation; 4) a comparison of the different modelling
methodologies with added biological complexities; and 5)
discussion. Further explanations on the numerical simula-
tions and the related figures in this section can be referred
to Additional file 1, the supplementary materials.

The formulation, simulation and analysis of codon based
models
Codon-based models are defined by both the rate law and
the update rule
The schematic diagram of the codon-based model for
mRNA translation is illustrated in Figure 1. The mRNA
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Figure 1 The codon-based model for mRNA translation. The codon-based lattice model for mRNA translation. The mRNA is represented by a
one-dimensional lattice with each site being one codon on the mRNA. The ribosome attaches the leftmost end of the mRNA (initiation, the entry
event) at some rate α, hops one codon towards its right (elongation, the hopping event) at some rate γ (possibly codon dependent) and exits from
the rightmost point (termination, the exit event) at some rate β . Multiple ribosomes can be on the mRNA simultaneously.

is represented by a one-dimensional lattice with each site
being one codon (triplet of nucleotides) on the mRNA,
and the translation process involves the ribosome move-
ment along the mRNA. This movement consists of three
different types of events, corresponding to the three stages
in mRNA translation, i.e., the entry of the ribosome from
the leftmost region of the mRNA (initiation), the hops of
the ribosome one codon a time to its right (elongation)
and the exit of the ribosome from the rightmost region
of the mRNA (termination). It is assumed that for a ribo-
some to attach the mRNA, the first r codons (which is the
number of codons that a ribosome covers) must be empty,
and for the ribosome to exit, its head must be at the last
codon of the mRNA [29]. Various minor variations of this
model are possible, and indeed it is also possible to mech-
anistically describe each movement step in more detail,
but we will employ such a model in our analysis, as this
has the main features relevant to the basic description of
translation.

Three distinct features can be observed from the above
codon-based model. First, each codon on the mRNA can
be occupied by no more than one ribosome. Second,
the ribosome can hop in only one direction. Third, mul-
tiple non-overlapping ribosomes can be on the mRNA
simultaneously.

We now define the model in detail. The following nota-
tion is used in order to describe the model rigorously. The
state of the n codons on the mRNA, or the “mRNA state”,
is denoted by a vector x = [x1 . . . xn] where xi = 1 means
the ith codon is occupied by a ribosome and xi = 0 the
ith codon empty. An event is identified by the position of
the head of the ribosome when the event occurs. The set
of the possible events is then E := {ei : i ∈ Ie} with the
index set being Ie := {0, r, r+1, . . . , n}, i.e., e0 the ribosome
entry, en the ribosome exit, and ei, i = r, r + 1, . . . , n − 1
the ribosome hopping from codon i to i + 1. Each event
is associated with a rate, denoted by α for the entry, β for
the exit and γi, i = r, . . . , n − 1 for the hops, respectively.
We also use γ0 for α, γn for β , $ := {γi : i ∈ Ie} being the
set of the event rates for simplicity of notation.

The codon-based model can now be defined by speci-
fying the event rates in $ and the associated update rule.
First, the event rates are interpreted as follows: within a
time interval dt, the probability of event ei to occur is

γidt if the mRNA state at the time t allows such an event
to occur; otherwise the probability is 0. For unknown
mRNA state x, the actual event occurrence rate of event ei,
denoted by pei(x), is dependent not only on the event rate
γi, but also on the event occurrence probability, denoted
by ψi(x), thus leading to the following rate law for the
codon-based model,

pei(x) = ψi(x)γi (1)

where the event occurrence probability is determined by
the mRNA state x, as follows,

ψi(x) =

⎧
⎪⎨

⎪⎩

P{xj = 0, j = 1, 2, . . . , r}, i = 0
P{xn = 1}, i = n
P{xi = 1, xi+1 = 0}, i = r, r + 1, ...n − 1.

(2)

Second, the codon-based model is updated in discrete
time steps and within one time step, more than one update
event can be allowed since multiple ribosomes can be on
the mRNA simultaneously. This fact thus implies that at
any time step, an order of the update events, termed as
the “update rule”, has to be specified. Although the update
rule has to agree with the rate law in (1), more than one
update rule can be possible and therefore which to choose
has to be carefully determined.

Given the initial mRNA state (which is usually an empty
mRNA, i.e., xi = 0, i ∈ Ic), the rate law (1) with the pre-
determined update rule defines completely the ribosome
dynamics in Figure 1, thus yielding a complete defini-
tion of the codon-based (stochastic) model for mRNA
translation.

The steady state of the codon-based model
The input parameters to the codon-based model are the
initiation (entry), elongation (hopping) and termination
(exit) rates (i.e. $) and the outputs of interest are often
steady state information such as the codon density, which
is defined as the average occupancy of the codons on the
mRNA at the steady state, denoted by ρi := ⟨xi⟩ for codon
i, and the translation rate, which is defined as the average
number of the translated proteins per unit time, denoted
by c. For the basic codon-based model, the speed of the
ribosome movement at each codon, or the average actual
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occurrence of each event, is the same at the steady state.
Then the steady state can be characterized by

pei = ψiγi = c, i ∈ Ie (3)
where ψi, i ∈ Ie are the average event occurrence proba-
bility at the steady state, i.e., ψi = ⟨ψi(x)⟩.

This relationship is solely determined by the rate law but
independent from the update rule. Indeed, n − r + 3 vari-
ables {ψi, c, i ∈ Ie} are involved in the n − r + 2 equations
in (3). This marks the importance of the update rule in the
sense that it determines the unique steady state solution
given the event rates. Note that in the above model, we do
not examine effects of ribosome limitation.

Codon-based models can be simulated by different
algorithms
The codon-based models are analytically tractable for
only very simple configurations. This makes the numer-
ical simulations an important approach in the analysis
of these models. The simulation algorithm is designed
based on the rate law and the update rule which define
the model. However, the rate law and the update rule do
not, of course, determine a unique simulation algorithm.
Therefore a careful investigation of simulation algorithms
for the codon-based model is necessary. We present the
following simulation algorithm which is applied through-
out the paper, with more detailed discussions of alter-
native algorithms provided in the Methods Section. The
presented algorithm uses a so-called random-sequential
update rule which is the most widespread update rule
employed in the literature. With this update rule, no
particular order of the update events is assumed.

Algorithm 1 Simulating TASEP with the random sequen-
tial update rule
1. Given n, r and the event rates in $: entry rate α, exit

rate β , and hopping rates γi, i = r, . . . , n − 1.
2. At time t,

(a) Check the current state x(t) to obtain all the
possible update events, Ie(x) and calculate the
corresponding update probabilities
{pc

i (x) : i ∈ Ie(x)} by (14);
(b) Determine the next update event ei by

simulating a discrete distribution with the
probabilities given by {pc

i (x)};
(c) Update the event ei.

3. Let t = t + dt and repeat Step 2.

The parameters pc
i (x) and dt in Algorithm 1 are given in

(14) and (15) in the Methods Section as follows: pc
i (x) =

γi∑

i∈Ie(x)

γi
and dt = 1∑

i∈Ie(x)

γi
where Ie(x) represents the set of

all the allowed update events with mRNA state x. Then for
the events that are allowed and not allowed to occur with
mRNA state x, the average number of event occurrences
during unit time are pc

i (x)/dt = γi and 0, respectively,
which coincides with the rate law in (1). Hence, in terms of
the long term steady state behaviour, this simulation algo-
rithm can provide a well justified statistical approximation
with arbitrary accuracy compared with the analytical
solution to the model. Note that the update time steps
in Algorithm 1 are time-varying with currently available
update events, thus making its algorithm structure simi-
lar to the widespread Gillespie algorithms [52-54]. Other
forms of alternative algorithms can be found in the Methods
Sections. It is worth pointing out that simulations with
other algorithmic variants resulted in the same steady states.

Different codon-based models lead to different steady state
solutions
We compare the steady state solutions of three different
codon-based models: ODE-based, TASEP-based and
Petri net based. The TASEP-based model is simulated
with the random sequential update rule as described
in Algorithm 1, and the other two described below are
analytically solved.

• ODE-based model (Heinrich and Rapoport, 1980).
Denote ρm the total concentration of mRNA in the
considered volume, ρr the concentration of the free
ribosomes, hi, i = r, . . . , n the average probability
that on an mRNA codon i is occupied by the head of
a ribosome, and ci the corresponding flux for the
ribosome movement from codon i to i + 1 (in
particular, c0 and cn for the fluxes of ribosome entry
and exit, respectively). The fluxes ci can be
determined as follows,

c0 = γ0ρmρrW0
ci = γiρmhiWi, i = r, . . . , n

where Wn = 1, W0 is the probability of the first r
codons being empty, and Wi, i = r, . . . , n − 1 the
conditional probabilities that codon i + 1 is empty
given that codon i is occupied by the head of a
ribosome. Except W0 and Wn, the conditional
probabilities Wi, i = r, . . . , n − 1 cannot be
determined directly by the given information. In the
Heinrich model [32], they are calculated as follows
with additional assumptions, the details of which can
be referred to in the Methods Section,

Wi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 −
∑min{2r−1,n}

s=r
hs, i = 0

1 − ∑r
s=1 hi+s

1 − ∑r−1
s=1 hi+s

, r ≤ i ≤ n − r

1, i = n − r + 1, . . . , n

(4)
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In Figure 2, in order to compare with the Petri net
and TASEP models, we assume ρr = 1. Then the
steady state of the Heinrich’s model is determined by
the following equations

γ0W0 = γihiWi = γnhn, i = r, . . . , n − 1
The relationship between the initiation, termination,
elongation and translation rates is given by

hi = c
γi

, i = n − r + 1, . . . , n

hi = c(1 − ∑r−1
s=1 hi+s)

γi(1 − ∑r
s=1 hi+s)

, r ≤ i ≤ n − r

γ0 = c
1 − ∑min{2r−1,n}

s=r hs

Further, noting that hiWi, i ∈ Ie is in fact the event
occurrence probability ψi, then the Heinrich’s model
can be regarded as an approximation to the
codon-based model by specifying ψi = hiWi, i ∈ Ie.
With this approximation, the n − r + 2 independent
variables ψi, i ∈ Ie are expressed by n − r + 1
variables hi, i = r, . . . , n, and then the steady state
Equations in (3) are solvable.

• Petri net model (Brackley et.al., 2012) [49]. A Petri
net is a direct graph consisting of places (codons on
the mRNA) and transitions (movement events of the
ribosome). A transition is fired (an event occurs) if
the corresponding places contain tokens (the mRNA
state allows such an event to occur). In a timed Petri
net, a waiting time is associated with the token, and
the corresponding transition can be fired only if the
associated waiting time has elapsed (the ribosome
moves with the stochastic event rate).
The Petri net model can be regarded as the
deterministic analogue of the stochastic codon-based
model (in a discrete event formulation), in the sense
that the waiting times in the timed Petri net model
are obtained from the deterministic mean of the
stochastic event rates. The rate law implies that the
average waiting time for the next event ei to occur is
exponentially distributed with parameter γi. This
thus leads to the fact that the average waiting time
between two consecutive occurrence of event ei is
1/γi provided that the mRNA state does not change
during this time interval. Taking this into account,
the Petri net model can then be defined by using 1/γi
as the constant waiting time for transition ei and
mapping the conditions of event occurrence (its
stochastic version is shown in (2)) into the tokens.
This Petri net model has a very simple (discrete)
deterministic ribosome dynamics which can be
calculated exactly, for example, the translation rate is
solely determined by the token(s) with the longest
waiting time (the slowest event rate). The Petri net

model has been studied analytically revealing this
feature and the results match numerical simulation.
For detailed descriptions of the Petri net model, and
methods used to simulate as well as analyze this, the
reader is referred to [49]. Note that in the original
Petri net model, the ribosome covers only one codon.
With multiple codon coverage, some modifications
occur. As we have noted, the model requires the first
r codons to be free for the ribosome to progress to
start synthesizing proteins. Accordingly, the waiting
times are modified to account for this. Thus we will
employ an initiation waiting time which is
determined by both the initiation rate and the sum of
the first r elongation rates (whichever is slower). In
this modified set up, we calculate the translation rate
based on the slowest waiting time, in analogy with the
results for the single codon coverage case.

The comparison of the steady states with these differ-
ent models are illustrated in Figure 2. The following can
be observed from the results. First, stochastic and deter-
ministic interpretations of the event rates lead to distinct
steady state solutions. A difference between the Petri net
model and the other two models lies in the fact that the
former is deterministic (with a discrete event formulation)
while the latter two are based on stochastic event rates
(the ODE is, of course, in a deterministic formulation). In
Figure 2, both the translation rate and the codon density
increase almost linearly with the initiation rate and satu-
rate fairly quickly for the Petri net model (this is obtained
as indicated earlier). These steady state profiles behave
differently for the other two models.

Second, although the Heinrich model agrees with the
TASEP-based simulations very well for slow initiation
rates, there are numerical differences for larger values
of initiation. Naturally, these conclusions may also vary,
depending on the parameter regimes. It should be pointed
out in Figure 2 that as the initiation rate increases beyond
a threshold in the Petri-net model, the translation rate
become insensitive to the initiation rate.

The different steady state solutions predicted by differ-
ent models motivate the need for a comparative assess-
ment of their relative merits and strengths.

How is the codon-based model updated: the hidden
assumption
In (3), the fact that as probabilities, 0 < ψi < 1, ∀i ∈ Ie
implies that the translation rate is bounded between 0
and the minimum event rates (either initiation, elonga-
tion or termination). Hence, given the event rates, which
unique steady state solution is finally determined is made
by the update rule. This indicates that conclusions regard-
ing the codon-based model should be made with explicit
consideration of the update rule.
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Figure 2 Comparing ODE, TASEP and Petri net models. The relationship between the initiation rate and a) the translation rate; b) the codon
density of the first codon; c) the codon density of the middle codon; and d) the codon density of the last codon, as obtained from the various
models: TASEP with the random-sequential update rule (Algorithm 1), the Heinrich model [32], and the deterministic Petri net model [49]. The
parameters are set as β = γi = 0.5, i = r, . . . , n − 1 (all parameters dimensionless). The waiting times in the Petri net model are determined by the
mean of $, i.e., the inverse of the event rates, as discussed in [49]. The codon density is the average occupancy of the codons by the ribosome on
the mRNA at the steady state.

The parallel update rule for modelling mRNA translation
The update rules can be divided into two categories, non-
ordered and ordered. The former, usually termed as “ran-
dom sequential” and discussed earlier, does not assume
any particular order of the update events. At any time step,
the next event to be updated is chosen randomly among
all the events with equal probability and updated prob-
abilistically with its rate if the current state allows it to.
Other rules that are not fully randomly updated contain,
for example, sublattice-parallel, and ordered-sequential
[55].

A particularly important ordered update rule is the par-
allel one. With this rule, at a specific time step, the update
events occur to all that are possible to be updated. At
first sight this rule seems to assume no particular order.
However, in our codon-based models with only unidi-
rectional transport, this update rule is in fact equivalent
to the so-called particle-ordered-sequential update rule
(with ordering starting from the left). With the latter,
within a single time step, all the events that are allowed to
be updated are updated probabilistically with their rates
from the left to the right. The equivalence is immediately
clear by noticing the fact that with the particle-ordered-
sequential update rule, an event being updated on the left
does not affect the update event to its right and therefore
all the events that are allowed to be updated are actually

updated probabilistically with their rates, as required in
the parallel update rule.

Most codon-based models for mRNA translation use
the random sequential update rule. This makes sense for
two reasons. First, this update rule yields a much simpler
master equation since the interactions in this update rule
are for the nearby-neighbours only, and other update rules
will usually lead to more non-local interactions. Second,
simulating the random sequential update rule is also natu-
ral and straightforward. However, in reality, the ribosomes
on the mRNA should act independently. A ribosome can
move whenever its right codon is empty and this move-
ment should not be affected by other ribosomes far away
from it. This means that at any time step, all the possible
movements of the ribosomes (or subsets thereof) could
be allowed, without interactions between each other. This
type of update is exactly what the parallel update rule
does. In this sense the parallel update or variation thereof
may be appropriate for modelling mRNA translation, as
pointed out in [49] as well.

The simulation algorithm for the codon-based model
with the parallel update rule is described in Algorithm 2,
which benefits from its equivalence to the particle-
ordered-sequential update rule. For mRNA state x, the
probabilities of event ei, i ∈ Ie(x) being updated is given
as pp

i (x) = γi
maxi∈Ie(x) γi

. Then the rate law implies that
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γidtp = pp
i (x), which further leads to the following time

step

dtp = 1
maxi∈Ie(x) γi

(5)

The above definitions of pp
i (x) and dtp ensure that given

mRNA state x, the events that are allowed and not allowed
to be updated are actually updated with rates pp

i (x)/dtp =
γi and 0, respectively. Therefore, although Algorithm 2
and Algorithm 1 are clearly different, both update rules
still agree with the rate law defined for the codon-based
model in (1).

Algorithm 2 Simulating TASEP with the parallel update
rule
1. Given n, r and the event rates in $: entry rate α, exit

rate β , and hopping rates γi, i = r, . . . , n − 1.
2. At time t,

(a) Check the current state x(t) to obtain all the
possible update events, Ie(x);

(b) From the left to the right, update event
ei ∈ Ie(x) with probability pp

i (x).

3. Let t = t + dtp and repeat Step 2.

Different update rules give different steady state solutions
A comparison of the steady state solutions caused by the
random-sequential and parallel update rules respectively,
is provided in Figure 3. This comparison shows the rela-
tionship between the variations of the initiation rates and
the steady state profiles. The differences between the two
update rules can be observed as follows.

First, the parallel update rule generally leads to faster
translation rates in all cases (Figure 3a). This observa-
tion will be further demonstrated by examples with added
biological complexities in subsequent sections. From the
random-sequential update rule in Algorithm 1 it is seen
that one update event occurs within each time step
1/

∑
i∈Ie(xr) γi (where xr is the mRNA state caused by the

random-sequential update rule; xp is used for the parallel
update rule in what follows), making the translation rate
being determined by ⟨∑i∈Ie(xr) γi⟩. On the other hand, the
parallel update rule in Algorithm 2 means that within a
time step 1/ maxi∈Ie(xp) γi, the average number of the actu-
ally occurred update events is ∑

i∈Ie(xp) γi/ maxi∈Ie(xd) γi,
thus making the translation rate being determined by
⟨∑i∈Ie(xp) γi⟩. Therefore, the fact that the translation rate
with the parallel update rule is faster than the random-
sequential one suggests that although all the possible
mRNA states can be seen for both update rules, with the
former, the mRNA state is such that those allowing more
update events to occur are more often seen. In addition,
it is also interesting to notice that the faster translation
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rate with the parallel update rule can also be an important
contributory factor leading to much faster translation rate
and higher codon density for the parallel updated Petri net
model than the other two random-sequentially updated
models in Figure 2.

Second, most codon densities exhibit the same pattern
as the average number of ribosomes on mRNA (Figure 3b,
3c), since the latter is closely related to (principally deter-
mined by) the codon density, but this is not quite the
case for either the leftmost nor the rightmost codons
(Figure 3b). In fact, the higher translation rate of the par-
allel update rule makes a higher probability of the first
codon being empty, meaning that the codon density of the
first codon with the parallel update rule is usually smaller
than that with the random-sequential one. On the other
hand, a higher translation rate then naturally leads to a
higher codon density of the last codon with the parallel
update rule than that with the random-sequential one.

Towards an exact steady state solution: probabilistic
Boolean network based model
On the one hand, the analytical solution to the codon-
based model for mRNA translation, which is often TASEP
based, is available for only relatively simple configurations
and analytical solutions with mean field approximations
(or variations thereof) may be obtained in special cases;
on the other, with only numerical simulations general
conclusions and clear trends are not readily drawn. There-
fore, a different approach for understanding the codon-
based model could be interesting, especially when such an
approach can partially bridge the gap between the analyt-
ical approaches to TASEP and numerical simulations. In
this context, we present the PBN based model, discussed
in detail as follows. Note that the following discussions are
for the random-sequential update rule only.

mRNA translation can be modelled with PBN
A Boolean network is the dynamic interaction of multiple
Boolean nodes where each node exhibits one of the only
two states, 0 and 1. The evolution of the network state
is governed by certain logical rules, or formally Boolean
functions.

mRNA translation can be modelled within the Boolean
network framework. Indeed, the mRNA state, x, is clearly
Boolean, since each of its components (the codon state)
can be only in state 0 or 1 and thus the codons can be
regarded as Boolean nodes. Then the ribosome move-
ment events that cause the dynamic evolution of the
mRNA state corresponding to the Boolean functions.
What makes mRNA translation different from a standard
Boolean network is that the ribosome movement is proba-
bilistic, governed by particular rate laws. This corresponds
to a Boolean network where the governing Boolean func-
tion is chosen probabilistically from a set of candidates,

and is formally referred to as a probabilistic Boolean
network.

To formally describe the PBN model for mRNA trans-
lation, we introduce the following matrix expression of a
Boolean function, in which a Boolean function is uniquely
expressed as a linear system, as follows. How the matrix
expression is derived and how various ribosome move-
ment events are described in this form are described in
the Methods Section.

x(t + 1) = Mxx(t)

In the above expression, the mRNA state at time t + 1,
x(t + 1), is dependent on both its state at time t, x(t), and
the occurred ribosome movement event, described by the
transition matrix Mx. Notice that for r > 1, the mRNA
state space does not contain all the 2n Boolean states. For
example, for n = 3, r = 2, only 3 out of the 8 Boolean
states are possible, i.e., [1 1 0], [0 1 1] and [0 0 0]. There-
fore, the above dynamics is only applicable to the set of all
the possibly allowed mRNA states for a specific pair of n
and r.

The selection of the next event is probabilistic, i.e., for
Mx being Mi it is associated with a probability pi, where
Mi is to denote the transition matrix corresponding to
event ei.

From the above, it is possible to define

ME :=
∑

i∈Ie

piMi

where ME denotes an averaged transition matrix, and its
role will be seen below.

The steady state profiles can be numerically but exactly
calculated with the PBN model
From the PBN theory the stationary distribution of the
PBN model is fully determined by the transition matrix
ME . Noticing that any two possible mRNA states are con-
nected and any possible mRNA state can stay unchanged
with a positive probability, we conclude that the under-
lying Markov chain governed by the transition matrix
ME of the PBN model is both irreducible and aperiodic.
Therefore, the PBN model always leads to a stationary
distribution which is the same as its asymptotic dis-
tribution. Denote this stationary distribution by π :=
[ π1 π2 . . . πm]T where m is the number of the possible
mRNA states with specific n and r. Then π can be solved
by either of the following two ways,

MEπ = π , or [π π . . . π ] = lim
i→∞

Mi
E (6)

The stationary distribution π means that at the steady
state, the probability of the mRNA state being the ith
possible state, denoted by χi, is given by πi. We call this
probability, πi, the “state density” of mRNA state χi.
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The codon density and translation rate at the steady
state can be calculated from the state density π , as follows,

[ρ1 . . . ρn] =
m∑

i=1
πiχi, c = βρn (7)

Algorithm 3 describes the procedure for calculating the
steady state profiles with the PBN model. Steps 2 and 3 can
be automatically done by using the standard semi-tensor
product toolbox for MATLAB [56] and therefore, given n,
r and the event rates $, the steady state of the PBN model
can be automatically calculated from Algorithm 3.

Algorithm 3 Calculating the steady state profiles from the
PBN model
1. Given n, r and the event rates in $: entry rate α, exit

rate β , and hopping rates γi, i = r, . . . , n − 1.
2. Determine the update functions by (20), (21) and (22),

and their corresponding structure matrices, Ln,r .
3. Calculate the structure matrix of the PBN model LE as

in (23) and the transition matrix ME as in (24).
4. Determine the state density by (6).
5. Calculate the codon density and translation rate by (7).

Analysis of the PBN model provides more information than
TASEP models and enjoys exact steady state calculations
First consider a toy codon-based model with n = 2 and
r = 1 to illustrate how the PBN model is constructed and
analysed. Since r = 1, all the four Boolean states are pos-
sible mRNA states. For the event rates of α = 0.6, β = 0.4,
γ1 = 1, the transition matrix is obtained from Algorithm 3
as

ME =

⎛

⎜⎜⎝

0.8000 0 0.3000 0
0.2000 0.5000 0 0.3000

0 0.5000 0.5000 0
0 0 0.2000 0.7000

⎞

⎟⎟⎠

From Algorithm 3, the state density can be calculated as
π = [0.3600 0.2400 0.2400 0.1600], where the state den-
sities are corresponding to the mRNA states χ1 = [1 1],
χ2 = [1 0], χ3 = [0 1] and χ4 = [0 0], respectively. Then,
the codon density and translation rate can be obtained by
(7) as ρ = [0.6000 0.6000] and c = 0.2400.

The codon density and the translation rate can be cal-
culated by the analytical TASEP-based (or ODE) solution
or TASEP-based simulations, while for the state density,
one must employ either simulations or the PBN model.
Although the codon density is a quantity often discussed
in the literature, the state density contains more infor-
mation and can be of great importance. For example, by
using the information contained in the latter we are able
to directly answer such questions as “the most and the

least often seen mRNA states” (χ1 = [1 1] and χ4 = [0 0]
respectively in the current example), which cannot be
addressed by only the codon density.

The steady state profiles can also be obtained by numer-
ical simulations. Running Algorithm 1 for 100000 time
steps, the codon density and translation rate are obtained
as ρ = [0.6008 0.6008] and c = 0.2403. Compared to
the exact solution provided by the PBN and analytical
TASEP models, this level of error incurred by the numeri-
cal simulations might be acceptable. However, suppose for
a specific mRNA translation process, we are interested in
how the slight change of an event rate affects the steady
state solution, i.e., the sensitivity of the event rate, then
the accuracy of the steady state solution is vital since the
calculation error could lead us to false conclusions. In this
case, the PBN model with exact steady solution compu-
tation provides a suitable alternative to running TASEP
simulations to estimate the asymptotic distribution (the
TASEP model may not be able to give any analytical
solution for complicated configurations).

Examples with real biological complexities to elucidate the
advantages and limitations of the models
In all the following examples (and examples presented
above as well), the number of codons on the mRNA and
the number of codons that the ribosome covers are set as
n = 50 and r = 12, [17,32] for illustrative purposes. Sim-
ulations with 120 codons have also been performed, with
similar conclusions. We employ this setting for illustra-
tive purposes, so as to discuss the main points of inter-
est. Since the mRNA state space is roughly exponentially
increasing with n (the number of all the Boolean states for
a network with n nodes is 2n and the possible mRNA states
are parts of them), a large number of n, e.g., several hun-
dreds, could pose substantial computational challenges
for solving the PBN model. On the other hand, the com-
putational resources required by the TASEP-based simu-
lations are also increasing rapidly with the increase of n.
Increasing the computational efficiency of the steady state
computation of the PBN model is ongoing work, and we
discuss this issue in the conclusions.

Slow codons
The elongation rates are determined mainly by the con-
centrations of the corresponding tRNA and/or amino
acids, and can thus be slowed due to rare correspond-
ing tRNA and/or amino acids. These codons, termed as
“slow” codons, become bottlenecks in the mRNA transla-
tion, and have severe effects on the steady state solutions
[57-60].

A comparison of the effects caused by the slow codons
is illustrated in Figure 4, with multiple models includ-
ing the Petri net model, the PBN model, TASEP-based
simulations, and both the random-sequential and parallel
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Figure 4 The steady state translation rates with slow codons and different update rules. The steady state translation rates for the case a) a
single slow codon and different update rules; b) two consecutive slow codons; and c) slow codons and the Petri net model. The parameters are set
as α = β = 1. The elongation rates are also equal to 1 except the slow one(s). The cases of a single slow codon and two consecutive slow codons
are considered, where for the first case the slow codon is on codon 25 and for the second they are on codons 25 and 26. In the second case, the two
consecutive slow codons have the same elongation rate.

update rules. Two observations are found. First, the steady
state solution obtained by the TASEP-based simulations
with the random-sequential update rule and the PBN
model coincide with each other, proving the correctness
of the PBN formulation. Second, in all cases the paral-
lel update rule leads to faster translation rates than the
random-sequential update rule, which further validates
the conclusion made earlier in Figure 3.

It is reported in [57] that consecutive slow codons at
the elongation stage (with the same elongation rate) give
rise to slower translation rate than a single one, based
on TASEP-based simulations with the random-sequential
update rule. This is shown to be still valid in our simula-
tions for the parallel update rule (Figure 4b). However, this
effect cannot be predicted by the deterministic Petri net
model (Figure 4c).Here the translation rate is determined
by the slowest rate and the existence of either a single or
multiple slowest rates do not matter. This point is briefly
discussed in [49], and the authors offer an explanation to
this effect by artificially introducing stochasticity to the
event rates. The ODE model, e.g., the Heinrich model, on
the other hand, does result in slower translation rate due
to consecutive slow codons (results not shown).

In addition to the stationary translation rate, one may
also be interested in the variations of the ribosome den-
sity across the mRNA, i.e., where and how long the queues

of the ribosome are due to the existence of the slow
codons. This information is of importance in optimizing
protein expression. For this information, the PBN model
may have particular value since, as mentioned earlier, the
PBN model provides us with detailed and exact stationary
ribosome distributions across the mRNA. The queues of
the ribosome can then be predicted from this distribution,
which however can be difficult for Petri net and TASEP
models.

These results indicate that the appropriate model should
be carefully chosen with respect to the problem to be
investigated. To qualitatively understand the effects of a
single slow codon, the Petri net model is acceptable. To
include the effects of consecutive slow codons, TASEP-
based models are sufficient, but for more quantitative
understanding, the effects of different update rules have to
be included. Finally, in order to know the specific mech-
anism that results in the slow codons, a comprehensive
ODE model based on individual biochemical reactions is
necessary.

Premature stop codons
mRNA translation is terminated via the recognition of the
stop codon by the release factors. The nascent polypep-
tide is then released and folded to form functional pro-
teins. In certain cases, through mutation or even by
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direct programming, in addition to the normal stop codon
located at the end of the mRNA, a premature stop codon
can be present in the mRNA. The transport of the ribo-
some thus bifurcates at the premature stop codon: it can
either terminate here, thus resulting in truncated, poten-
tially functionless, polypeptides, or readthrough the pre-
mature stop codon to produce the full-length protein (in
some cases, the readthrough may be associated with a
frameshift, but such details are somewhat tangential to the
discussion here). Such a mechanism has been reported,
for example, in the mRNAs encoding eRF1 and RF2 [6,39].

We will perform computational analysis of a scenario
involving a premature stop codon where termination or
readthrough may occur at the premature stop codon.
Specifically, we assume for every ribosome encountering
the premature stop codon, it can readthrough (thus pro-
ceed to the production of the full-length protein) with
a fixed probability µ when the ribosome tries to move.
The TASEP-based simulations can be readily modified
to accommodate this change by adding the readthrough
event to the set of events and adjusting the corresponding

event rates. The PBN model can then be obtained from
this new simulation algorithm, the details of which can be
referred to the Methods Section.

We show the steady state solutions with varying
readthrough probability µ in Figure 5, for both update
rules and both the PBN model and TASEP-based sim-
ulations. Again, as before, the parallel update still leads
to faster translation rate in all cases. This is further evi-
dence showing the importance of the update rules in
the quantitative understanding of the mRNA translation
process.

The translation rate is seen to be strictly increasing
(almost linear) with the probability of readthrough for
both update rules (Figure 5a), so are the average num-
ber of ribosomes on mRNA and most codon densities
(Figure 5b, 5c). The decrease of the codon density of the
first codon (Figure 5b) can be explained by the increase
of the translation rate due to the increase of the probabil-
ity of readthrough, as the faster translation rate makes the
ribosome stay on the first codon shorter (similar expla-
nations can be seen in Figure 3). These observations are
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not straightforward at first sight, especially that the prob-
ability of readthrough seems to dominates the overall
translation rate in our simulations. This effect may be
parameter-dependent, but at least in our case it shows the
significant influence of the presence of the premature stop
codon.

The effect of the premature stop codon cannot be eas-
ily directly modelled within the Petri net model frame-
work, since at the premature stop codon, three ribosome
movement events, i.e., staying where it is, stop codon
readthrough and premature termination, exit rather than
only the first two events for normal codons. Consequently,
the existence of a third event makes the waiting times in
the Petri net model undefined and so significant modifica-
tion of the model structure is needed. We may simply treat
the inclusion of the premature stop codon as an effect that
slows the event rate at the premature stop codon (thus
totally ignoring the premature termination event) by a
factor µ. This results in a new waiting time at the pre-
mature stop codon as 1/µγj. A similar linear increase of
the translation rate with the increase of the probability
of readthrough can be predicted if the translation rate is
determined by the event rate at the premature stop codon
(i.e. γj is the slowest event rate), but no similar predictions
as in Figure 5 can be made otherwise. On the other hand,
the Heinrich model may be possibly modified to accom-
modate the premature stop codon, while this modification
will require the inclusion of an additional early termina-
tion event at the premature stop codon. We do not discuss
this point further, except to note that the Heinrich model
or related ODE models can be modified to incorporate
premature stop codons and the readthrough rate (espe-
cially if rate limiting) can play a significant role in affecting
the translation rate.

Negative autoregulation of initiation
mRNA translation is most likely to be regulated at the
initiation stage in multiple situations, for a rapid con-
trol of gene expression at a low cost [7]. This regulation
can be done by regulating the initiation factor activity
(which affects almost all scanning-dependent initiation)
and through sequence-specific RNA-binding proteins
and microRNAs (which affect individual mRNAs),
respectively. For example, it is suggested that the poly(A)-
binding protein (PABP) is subject to a negative autoreg-
ulatory feedback loop where the overexpression of PABP
leads to the autoregulatory repression of PABP itself [61].
Similar negative feedback mechanisms are also observed
for initiation factors such as eIF1 and IF3 [6,62,63].

We perform a computational analysis of such a negative
autoregulatory mechanism at the level of initiation. For
this purpose, we describe this autoregulation mechanism
with a simple model. To simplify the model, we assume
that all the other factors that affect the initiation rate are

kept unchanged, meaning that the variation of the initia-
tion rate is solely determined by the concentration of the
protein, denoted by ρI , in a way that satisfies

α = 1
1 + kIρI

αI (8)

where αI is interpreted as the maximum initiation rate (for
ρI → 0), and kI > 0 controls the autoregulation strength.
We note that α → αI for kI → 0.

We now discuss two ways in which the feedback was
incorporated.

The concentration of the protein is dependent on both
its production rate, i.e., the translation rate c, and its
degradation rate, denoted by dI and assumed to be con-
stant. In the first case, we will assume that ρI at steady
state is given by the ratio of the translation rate to the
degradation rate for instance, as the steady state of an evo-
lution equation of the form dρI/dt = cρm − dIρI where
the concentration of the total mRNA ρm is assumed to be
constant.

Note that in the above model, the feedback process from
protein to initiation occurs in such a way that depends on
the mean translation rate. The simultaneous solution of
the equation (ρI = c/dI) coupled with the equation for
the translation process results in the steady state trans-
lation rate and protein concentration with such negative
feedback present. If the steady state is stable, then its char-
acteristics and the eventual state of the system can be
obtained from this.

The second way of describing this system is to describe
the production and degradation of the protein in an
explicit stochastic description, coupled to the translation
process. We have analyzed both models (which give essen-
tially the same results) and will show results from the fully
stochastic description. The full stochastic description is
simulated for the random-sequential update rule using a
modified version of Algorithm 1. In this modified algo-
rithm, the change of the protein concentration is recorded
at each step, which leads to the update of the initiation
rate as in (8), and then the next update event is simu-
lated based on a new set of event rates. Note that the
evolution of ρI is simulated using its discrete-time ver-
sion, where dt is corresponding to the varying update time
steps as in Algorithm 1. We examine the model written
above, to examine the role of feedback and related factors
in affecting the steady state protein concentration.

The steady state solutions governed by the autoregu-
lation of the protein are shown in Figure 6. With the
increase of the autoregulation strength kI (note that kI =
0 corresponds to the situation without autoregulation),
the initiation rate decreases due to (8) (Figure 6a), which
then leads to the decrease of the protein concentration ρI
(Figure 6b). In fact, at the steady state the translation rate
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Figure 6 The effect of negative feedback autoregulation. The steady state for the case of negative feedback autoregulation detailed in (8),
where a) and b) show the translation rate and protein concentration for fixed dI and varying kI , while c) and d) correspond to fixed kI and varying dI .
The parameters are set as β = 1, γ = 1 and ρm = 1.

and the protein concentration are approximately propor-
tional, which are verified from the similarity of the curves
in Figure 6a and Figure 6b. On the other hand, the increase
of the degradation rate dI leads to the decrease of the pro-
tein concentration (Figure 6d), and then the increase of
the initiation rate and consequently the translation rate
(Figure 6c). Again, with respect to the protein concen-
tration ρI , the increase of the degradation rate dI is a
more dominant factor than the resulting increase of the
initiation rate.

We also point out that the steady state translation
rate and protein concentration can be solved from the
first method by simulating the translation process for a
given initiation rate, determining the translation rate, then
determining the protein concentration and iterating. This
amounts to “solving” for the steady state of the translation
process with the negative feedback. In this context we also
point out that a PBN formulation can be used to exactly
obtain the translation rate for a given initiation rate (with-
out simulation), and so can be used more effectively in
the iterative process, than simulation. Thus numerically
exact calculation of the steady states can also facilitate
the solution of questions regarding how to tune feedback
strengths to achieve particular steady state translation
rates, and provides information about the state density in
the presence of feedback.

Finally it is worth briefly examining the steady state of
the Petri net model with feedback. We examine this as
follows. We assume that protein concentration is deter-
mined as a linear function of the translation rate, exactly
as above, and ask, what is the steady state protein con-
centration and translation rate from the Petri net model
with feedback. Since the translation rate is determined
by the slowest step, We see that if the initiation waiting
time is not the dominant one, then the Petri net model
reveals a translation rate which is insensitive to the feed-
back strength, for moderate levels of feedback. This is in
contrast to TASEP, PBN and ODE formulations which do
demonstrate sensitivity to the feedback strength (this is
because the translation rate depends on the slowest rate in
a rather simple way). Further, if the initiation is rate limit-
ing, then the effect of (moderate) feedback in this model
is stronger than in other models, because of the lack of
“buffering” from other steps.

Discussion
Modelling methodology comparisons
In this paper, we have analyzed different models of trans-
lation including their use to model regulatory phenomena,
both in the simplest settings and with additional complex-
ities incorporated. Models for mRNA translation can be
divided into different categories based on their underlying
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assumptions. We briefly compare the different models in
Table 1, and emphasize some relevant points, as follows.

• The ODE models are deterministic, based on detailed
biochemical reactions and do not enforce strict
exclusion [34,35,64], TASEP-based models employ
stochastic rate laws for ribosome movement in (1)
and enforce strict exclusion [17,29,57], and the Petri
net model assumes deterministic waiting times for
ribosome movement, while enforcing exclusion as
well [49].

• How the deterministic waiting times may be chosen a
priori in more complex cases for the Petri net model
is not clear. Further, the effect of parameter variation
in Petri-net models is not as easy to analyze as ODE
models, and this model appears to have limitations in
systematically dealing with certain kinds of extra
regulatory complexity in its current model structure.
The numerically exact computation of the stationary
state of the PBN models provides a useful
complementary tool here.

• The number of the Boolean states is exponentially
increasing with n, thus making the computational
costs for the PBN model and TASEP-based
simulations fast increasing with n. The use of iterative
linear algebra Methods, will be useful in solving for
steady states of PBN models when the size increases.

The PBN model provides exact steady state solutions
compared to the statistical approximations of the TASEP-
based simulations, and it is numerically solvable for
models with real biological complexities which make the
analytical approaches to TASEP difficult. Further, both
in translation and elsewhere, the inclusion of the bio-
logical complexities, especially regulatory mechanisms,
significantly modifies the TASEP structure. In systemati-
cally analyzing such modified TASEP structures, in some
cases a complementary PBN may be useful, especially
since there exist tools for analyzing both the PBN and
its deterministic counterpart, using semi-tensor product
formulations, going beyond simulations.

Our studies revealed that the models employed are in
broad agreement in many cases, but that significant dif-
ferences could be seen in the Petri net model both in the

simplest model (Figure 2) and when additional variations
such as slow codons are introduced (Figure 4). This should
be mainly due to the different underlying assumptions
between the Petri net model and TASEP-based models
(and other ODE models): the former uses deterministic
waiting times while the latter adopts stochastic ribosome
movement rates.

The update rule is important in the quantitative under-
standing of the codon-based model for mRNA trans-
lation and its effects need to be accounted for. Most
existing studies have focused on the random-sequential
update rule [11,18,29,30]. It has been suggested how-
ever that a parallel-like update may be more appro-
priate for modelling mRNA translation [49]. The two
update rules exhibit different behaviours for even the basic
codon-based model as shown in Figure 3. These differ-
ences are more evident in the presence of real biological
complexities. Although the examples presented in this
study illustrates only quantitative differences, it is possi-
ble that update rules could lead to important qualitative
changes when other form of biological complexities are
included.

Multiple-model methodology and hybrid modelling for better
understanding mRNA translation
The Petri net model, TASEP-based models and ODE
models are models at different levels of abstraction with
different assumptions made and relaxed, and give differ-
ent insights. They also vary in the ease with which they
can be thoroughly analyzed and dissected. Therefore the
use of multiple modelling methodologies can provide a
more complete understanding of the mRNA translation
process, a robust platform from which to investigate spe-
cific biological effects. It also allows for an optimal use
of available analysis tools. For instance, one can obtain
some basic qualitative understanding from the Petri net or
similarly based model, then uncover the structural prop-
erties from the TASEP-based models and finally probe
specific regulatory problems with detailed ODE models.
TASEP-based models are flexible and can accommodate
real biological complexities (sometimes needing signifi-
cant expansion/modification). In the TASEP-type mod-
els, the PBN model can be used to compute stationary

Table 1 Comparing codon-based models

Petri net TASEP-based (PBN inc.) ODE

Assumption Deterministic waiting times Stochastic rate law Biochemical reaction rates

Exclusion enforced Yes Yes No

Update rule Parallel Random-sequential or parallel N.A.

Solution methods Analytical, simulations Analytical, simulations, or numerically
exact (PBN)

Analytical, simulations, bifurcation
analysis

Added complexity Partly allowed Allowed Allowed
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distributions which may work effectively for moderate
size problems; this can then be combined with numer-
ical simulations for large systems, and finally analytical
approaches to TASEP can be used, where possible, to give
rise to more general conclusions. The exact computation
of stationary distributions allows us to obtain important
information about the stationary state and its sensitivity
to parameters without doing repeated simulations. ODE
models provide an easier framework for analysis, but do
not naturally incorporate certain features such as strict
exclusion. They can be analyzed much more easily than
other models, especially when additional regulatory com-
plexity is present and this becomes more pronounced
as the model size increases. In addition, different tools
from control engineering can be brought to bear here,
something which is relevant in synthetic biology. The use
of a combined model approach allows us to effectively
combine tools of analysis on one hand with a handle on
process complexity on the other (this is especially true of
the TASEP/PBN/ODE models).

In addition, depending on the question under inves-
tigation, either fine grained (perhaps locally) or coarse
grained models may be employed [50,51], and therefore
it is important to be able to systematically fine-grain
and coarse-grain models. Relatively coarse grained models
have been shown to be useful, successfully making predic-
tions in multiple contexts. The multiple model methodol-
ogy may be useful here as well. For instance, certain coarse
grained ribosome flow models, can be cast as and ana-
lyzed as probabilistic boolean models and their stationary
distributions exactly numerically determined. This can be
combined with models which incorporate more detailed
resolution, which may be analyzed by simulation.

The above points highlight the tradeoff between the
complexity of the model and the effectiveness in analyz-
ing it. A basic aspect of interest in systems biology is what
the role of intrinsic factors and parameters are and how
they combine with extrinsic factors in regulating protein
synthesis. One way to approach this is to employ suit-
able representations of the protein synthesis process and
analyze this in silico. This includes the study of “syn-
thetic genomes” [49] or the coupling with other factors.
In synthetic biology it is desired to build robustly func-
tioning circuits to meet particular objectives [10,65,66].
We see that in general ODE models allow for a detailed
multiparametric sensitivity/bifurcation analysis. Detailed
TASEP type models (possibly with significant extensions,
incorporating finite pools of ribosomes, along with other
factors) are analyzed primarily by simulations. A PBN
type model (possibly coarse grained) can offer a simplified
middle-ground model: it incorporates some of the essen-
tial features of translation, is stochastic, and can be used to
perform multiparametric sensitivity analysis. This can be
determined directly mathematically, once the stationary

state is computed, and only needs matrix vector prod-
uct computations. The result of such analysis can be used
in conjunction with that of ODE models and detailed
stochastic simulations.

In general the use of multiple methodologies in conjunc-
tion in specific problems, allows us to more clearly under-
stand how different assumptions in the model, including
those implicit in the modelling methodology, affect the
conclusions and predictions. This in turn, would allow for
a tighter set of conclusions which could be drawn and
the effects of stochasticity, crowding and their interplay
with regulatory complexity systematically elucidated with
an effective use of available tools. This approach allows
for predictions and extrapolations to be made with greater
confidence.

It may be anticipated that in some situations a hybrid
modelling approach can be useful: to model the mRNA
translation process for a specific problem, those parts that
are not directly related to the considered problem can be
modelled with relatively simple descriptions and the parts
which are the focus of interest are modelled in more detail.
For example, to understand the autoregulation mecha-
nism considered, the elongation and termination stages
can be modelled with the TASEP assumptions (stochastic
event rates) or simplifications thereof, while the initiation
stage can be much more detailed (biochemical reactions).

This is equally relevant to understanding the natural
coupling of translation with other processes. Finally it is
important to be able to systematically and appropriately
coarse grain models of translation. The use of multiple
models in conjunction would be very helpful in making
the transition from the individual process to the systems
description.

Conclusions
Translation is a basic genetic process which is widespread,
and controlled in a multitude of ways in cells. Further
the advent of synthetic biology suggests that there will
be additional ways of this basic process being artificially
regulated and manipulated [12,67]. The characteristic
of translation is that it has a basic process (ribosome
movement on mRNA) upon which is overlaid various
additional regulatory and other complexities. Exam-
ples of this include regulatory mechanisms at initiation
[5,20,36,68,69] and termination [70-73], nonsense medi-
ated decay [39,74], the regulation of elongation steps by
tRNA and the detailed mechanochemical steps involved
in the ribosomal movement [22,40,75,76] and feedback
[77]. Many of these aspects are being actively investigated
experimentally. It is clear that modelling and computa-
tional frameworks need to be deployed in a systematic
way to investigate many of these issues and to elucidate
other issues such as the role of stochasticity in translation
and its contribution to phenotypic noise.
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Existing models of translation, already span a broad
spectrum from the single ODE model to the detailed com-
putational model of translation incorporating the effects
of many factors [28]. The models we have examined and
analyzed, exhibit an intermediate level of complexity, but
are codon based. These models are built based on differ-
ent assumptions of the mRNA translation process, thus
making it important to clearly recognize the underlying
assumptions and to select the right model(s) for spe-
cific problems. The different insights brought by different
models also make the multiple-model methodology and
hybrid modelling approaches desired choices for mod-
elling and understanding the mRNA translation process.
The multiple model methodology allows us to obtain a
handle on process complexity on one hand and combine
it with effective tools of analysis on the other. This is of
relevance to both systems and synthetic biology.

Systems biology. The understanding of translation and
protein synthesis, and regulatory mechanisms therein, is
an important theme in systems biology. Multiple data-
driven models have been proposed for mRNA translation,
where one is usually satisfied as long as the model matches
the available experimental data (and possibly makes a few
additional predictions successfully). However it is often
the case that arbitrarily many models can be defined for
the same data set and perform the same task, and further
the applicability and limitations of the models are not sys-
tematically assessed. This means that the extent to which
the models developed can be further employed is not
clear. Nor is it clear, how different such models describing
different facets of the system, actually fit together in effec-
tively describing the full system.This makes it necessary
for a careful investigation of the modeling methodolo-
gies and highlights the need for a systematic modelling
approach involving multiple models and levels of descrip-
tion. In addition, the mRNA translation process is regu-
lated at multiple levels which is related to other parts of
the cellular system. Therefore, a detailed understanding of
this process will then require such system level models as
discussed in this work.

Synthetic biology. A key aspect of synthetic biology is
the precise control of gene expression and protein synthe-
sis, and translation is an emerging area of focus. Synthetic
biology is now engineering riboswitches, ribozymes, small
RNAs [78,79], and other possible regulatory molecules to
regulate protein synthesis, suggesting that sophisticated
dynamic regulation of protein synthesis may be possi-
ble in the future. Thus far, the design has been done in
a somewhat ad hoc and case-by-case manner, focusing
on individual bio-blocks while lacking the system level
understanding of the whole process. However the mRNA
translation process is closely regulated at multiple levels

and is also subject to noise, and further, synthetic cir-
cuits may be subject to extraneous interactions in the
host cell(s). Therefore the system level understanding of
the translation process itself and the different levels of
regulation, is vital [14,15]. In addition, the models used
for understanding, design and control purposes, should
also be at an appropriate level of complexity, maintain-
ing a balance between model complexity and the ability to
analyse it (note that ODE models benefit from additional
tools of control engineering), while making it possible to
systematically account for and predict the effects of inher-
ent regulatory effects and stochasticity. The modelling
methodology comparison and analysis tools presented in
this work provide powerful tools for this purpose, provid-
ing a useful foundation for synthetic biology.

Different models and different formalisms have been
used in specific contexts to elucidate different aspects
of translation in systems biology and design circuits in
synthetic biology, and different levels of coarse and fine
graining have been performed, all on a more-or-less ad
hoc basis. Since in many cases the models describe dif-
ferent facets of the same system it is important to have a
more unified and systematic framework which allows for a
genuine systems understanding of the translation process
as well as reliable simplifications thereof.

The approaches outlined above, possibly combined with
tools such as Bayesian inference will allow for reliable and
systematic frameworks, which both effectively distill the
intrinsic complexity of translation, interaction with and
control by extrinsic factors and can also be used with
greater confidence for predictive purposes, as tools to
complement experimental investigations, as well as for
systems level descriptions. All these aspects provide sub-
stantial new challenges for modelling and computation of
this basic genetic process which itself combines different
scales and levels of complexity.

Methods
In this section, we discuss different aspects of the mod-
els and simulation algorithms we employ. We discuss
in turn (i) Some ODE models (ii) Simulation algo-
rithms and variants for stochastic simulation of transla-
tion (iii)Formulation of Boolean rules to describe different
events in translation.

Heinrich’s model
We start by briefly discussing an ODE model developed
by Heinrich and Rapoport.

Denote ρm the total concentration of the mRNA in the
considered volume, hi, i = r, . . . , n the average probability
that an mRNA codon i is occupied by the head of a ribo-
some, and ci the flux for the ribosome movement from
codon i to i + 1 (in particular, c0 and cn for the fluxes
of ribosome entry and exit, respectively). The variation
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of the concentration of those mRNA whose ith codon is
occupied by the head of a ribosome is determined by the
following equations:

ρm
dhi
dt = ci−1 − ci, i = r + 1, . . . , n

ρm
dhr
dt = c0 − cr ,

The fluxes ci can be determined as follows.

• cn. The ribosome can exit whenever its head is at the
last codon of the mRNA. Therefore

cn = γnρmhn

• c0. The ribosome can attach the mRNA whenever the
first r codons on the mRNA are empty. Therefore,

c0 = γ0ρmρrW0

where ρr is the concentration of the free ribosomes,
and the probability of the first r codons being empty,
denoted by W0, is given by

W0 = 1 −
min{2r−1,n}∑

s=r
hs

• ci, i = r, . . . , n − 1. These fluxes can be generally
written as

ci = γiρmhiWi, i = r, . . . , n − 1
where Wi is the conditional probability of codon i + 1
being empty given codon i is occupied by the head of
a ribosome.
Without making further assumptions, Wi can not be
determined. In the Heinrich’s model [32], an
assumption is made that Wi equals the conditional
probability of codon i + 1 being empty given codon i
is either empty or occupied by the head of a ribosome.
The latter probability can then be shown to equal the
conditional probability of codon i + 1 being empty
given codon i + 1 is either empty or occupied by the
tail of a ribosome [80,81], and can be calculated as

Wi = 1 − ∑r
s=1 hi+s

1 − ∑r−1
s=1 hi+s

, i = r, . . . , n − 1

Noting that hi = 0, i > n, the above can further be
written as

Wi = 1 − ∑r
s=1 hi+s

1 − ∑r−1
s=1 hi+s

, r ≤ i ≤ n − r

Wi = 1, i = n − r + 1, . . . , n − 1

In Figure 2, in order to compare with the Petri net and
TASEP models, we assume ρr = 1, i.e., a ribosome is
always ready to start the initiation. Then the steady state
solution is determined by the following equations

γ0W0 = γihiWi = γnhn = c, i = r, . . . , n − 1

The relation between the elongation termination and
initiation rates and the translation rate is given by

hi = c
γi

, i = n − r + 1, . . . , n

hi = c(1 − ∑r−1
s=1 hi+s)

γi(1 − ∑r
s=1 hi+s)

, r ≤ i ≤ n − r

γ0 = c
1 − ∑min{2r−1,n}

s=r hs

Notice that hiWi, i ∈ Ie is in fact the event occur-
rence probability ψi, then the Heinrich’s model can be
regarded as an approximation to the codon-based model
by specifying ψi as follows,

ψi =

⎧
⎪⎨

⎪⎩

1 − ∑min{2r−1,n}
s=r hs, i = 0

hi
1−∑r

s=1 hi+s
1−∑r−1

s=1 hi+s
, r ≤ i ≤ n − r

hi, i = n − r + 1, . . . , n
(9)

The simulation algorithms
In this subsection, we briefly discuss simulation algo-
rithms and their variants for simulating the basic transla-
tion process. All the following simulation algorithms are
based on the rate law in (1) and the random-sequential
update rule. With this update rule, no particular update
order is predetermined: at each time step, the update
event is chosen randomly with equal probabilities. For the
sake of exposition, in what follows we assume that all the
event rates are no more than one and can thus be inter-
preted as probabilities. This assumption does not lead to
any loss of generality, as for any set of event rates $ =
{γi, i ∈ Ie}, we can replace it by $m = {γi/ maxi∈Ii γi, i ∈
Ie}, and the steady state solution for the original event
rates $ can be obtained from the scaled $m with the scale
factor maxi∈Ii γi.

We now discuss the algorithms and their variants. We
begin with what may be regarded as a conventional algo-
rithm [44].

• Conventional algorithm. The definition of the
random-sequential update rule naturally leads to
Algorithm 4, which clearly does not assume any
particular update order. The time step )t in
Algorithm 4 is determined by making the algorithm
fit with the rate law (1) and (2). From Algorithm 4,
the number of the event occurrence of ei within
[ t, t + )t) should read 1

n−r+2ψi(x)γi where 1
n−r+2 is

the probability of the current update event being i.
From (1) it thus holds that

1
n−r+2ψi(x)γi = ψi(x)γi)t, i ∈ Ie. Since this
relationship holds for any [ t, t + )t) and x(t),
therefore

)t = 1
n − r + 2 (10)
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The determination of )t in (10) ensures that within
any time interval )t, the actual event occurrence rate
of Algorithms 4 is the same as what the rate law
defines.
This algorithm, picks out one possible update event
chosen from a set of events with equal probability,
checks if this event is possible, and if it is,
probabilistically updates it in a manner
commensurate with the event rate. This is described
in more detail below.

• An alternative algorithm equivalent to Algorithm 4.
Although Algorithm 4 is probably the most popular
used algorithm in the literature, its structure does not
readily allow modifications. We consider and discuss
a variant Algorithm 5 for further discussions. The
difference of these two algorithms lies in their
algorithmic structures: Algorithm 4 first determines
the update event with equal probability and then
updates the event according to its rate, while
Algorithm 5 combines these two steps by making the
determination of the next update event directly
dependent on their rates.
As in Algorithm 4, Algorithm 5 does not predefine
any particular update order and therefore it is still
random sequentially updated. With Algorithm 5, the
average number of occurrence of event ei during
[ t, t + )t) is pd1

i ψi(x), which should equal ψi(x)γi)t
in Algorithm 4. Therefore, it yields that

pd1
i = γi

n − r + 2 (11)

With the above discussion it is readily seen that
Algorithms 4 and 5 are equivalent to each other.

• The efficient fixed-time-step algorithm. In
Algorithm 5, the probability of an event index being
chosen from Ie is given by ∑

i∈Ie pd1
i =

∑
i∈Ie γi

n−r+2 < 1.
This thus implies that Algorithm 5 (Algorithm 4 as
well) skips a step without any action with probability
1 − ∑

i∈Ie γi/(n − r + 2). This is an obvious source of
inefficiency.
Algorithm 5 can be more efficient by replacing {pd1

i }
by

pd2
i = γi∑

i∈Ie γi
, i ∈ Ie (12)

The more efficient algorithm is given in Algorithm 6.
The new time step, )t′, can be deduced from
pei(x) = pd2

i ψi(x)

)t′ = pd1
i ψi(x)

)t , i ∈ Ie, ∀x, which gives

)t′ = 1∑
i∈Ie γi

(13)

• The efficient varying-time-step algorithm. In
Algorithms 5 and 6 the selected update event may not

actually occur as the state may not allow it to. At the
steady sate, the average probability that a time step is
skipped can be determined for Algorithms 5 and 6 as
pd := 1 − ∑

i∈Ie pd
i ψi ≥ 0 where pd

i can be pd1
i or pd2

i ,
respectively. Notice that the sum of the probabilities
of defining the next event index is always no more
than one, i.e., ∑i∈Ie pd

i ≤ 1. Therefore Algorithm 6 is
already the most possible efficient algorithm with the
same simulation procedure since ∑

i∈Ie pd2
i = 1. Any

improvement of the algorithm efficiency has to be
made by modifying the algorithm structure. This is
done by switching the fixed time steps in Algorithms 5
and 6 to time-varying ones in Algorithm 1, as follows.
For a specific state x, denote the set of the indices of
all the possible update events by Ie(x) ⊂ Ie and the
corresponding rates by $(x) := {γi : i ∈ Ie(x)} ⊂ $.
Ie(x) is entirely determined by the state x and is thus
time-varying. Define the probability of the index of
the next update event being i ∈ Ie(x) by

pc
i (x) = γi∑

i∈Ie(x) γi
, i ∈ Ie(x) (14)

Note that the actual event occurrence rate of ei is
proportional to γi and the sum of all these
probabilities equal one, i.e. ∑i∈Ie(x) pc

i (x) = 1.
Within the simulation time step, denoted by dt, for
i ̸∈ Ie(x), the number of actual event occurrence is 0
and for i ∈ Ie(x), it holds that pc

i (x) = γidt, which
gives

dt = 1∑
i∈Ie(x) γi

(15)

Therefore, the new algorithm given in Algorithm 1,
still agrees with the rate law and the random
sequential update rule. Note that the time steps in
Algorithm 1 are time-varying with the current
mRNA state.

• The statistical equivalence of the algorithms.
Although the update time interval and update
mechanisms are different, all the algorithms ensure
that within their individual update time interval, the
probability of event occurrence is exactly given as in
(1), and the update order is not particularly
determined (random-sequential). Therefore, in the
long run all these algorithms are equivalent in the
statistical sense, leading to the fact that all the
statistical characteristics as the translation rate and
codon density are the same for all the algorithms.
On the other hand, at the steady state the average
time interval between two consecutive events is
⟨dt⟩ = ⟨ 1∑

i∈Ie(x) γi
⟩ = 1

(n−r+2)c (determined by
Algorithm 1) but the simulation time intervals for
different algorithms are )t = 1

n−r+2 for Algorithms 4
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and 5, )t′ = 1∑
i∈Ie γi

for Algorithm 6 and ⟨dt⟩ for
Algorithm 1, respectively. Therefore, on the average
⟨ n−r+2∑

i∈Ie(x) γi
⟩ (or, 1

c ) time steps in Algorithm 4 and 5
would result in an actual update event, and
⟨

∑
i∈Ie γi∑

i∈Ie(x) γi
⟩ (or, ⟨

∑
i∈Ie γi

(n−r+2)c ⟩) time steps in Algorithm 6.
Only for Algorithm 1 every time step will definitely
result in an actual update event.

Algorithm 4 The conventional algorithm with the
random-sequential update rule
1. Given n, r and the event rates in $: entry rate α, exit

rate β , and hopping rates γi, i = r, . . . , n − 1.
2. At time t, pick randomly an event index i from Ie with

equal probability.

(a) If i = 0, and the codons from 1 to r are empty,
a new ribosome enters and occupies codons
from 1 to r with probability α;

(b) If i = n, and the last codon is occupied
(equivalent to the occupation of the last r
codons), the last r codons become empty with
probability β ;

(c) If i ̸= 0, n, codon i is occupied and codon i + 1
is empty, the ribosome hops from i to i + 1
(i.e., codon i − r + 1 becomes empty and codon
i + 1 occupied) with probability γi;

(d) If none of the above conditions is satisfied, do
nothing.

3. Let t = t + )t and repeat Step 2.

Algorithm 5 The equivalent alternative algorithm with
the random-sequential update rule
1. Given n, r and the event rates in $: entry rate α, exit

rate β , and hopping rates γi, i = r, . . . , n − 1.
2. At time t, simulate a random number according to the

discrete distribution with the probability being {pd1
i } in

(11), and determine the next event index i.

(a) If i = 0. A new ribosome enters and occupies
codons from 1 to r if they are empty; otherwise
do nothing;

(b) i = n. The last r codons become empty if they
are occupied; otherwise do nothing;

(c) i ̸= 0, n. The ribosome hops from i to i + 1 if
codon i is occupied and i + 1 empty; otherwise
do nothing.

3. Let t = t + )t and repeat Step 2.

Algorithm 6 The efficient fixed-time-step algorithm with
the random-sequential update rule
1. Given n, r and the event rates in $: entry rate α, exit

rate β , and hopping rates γi, i = r, . . . , n − 1.
2. At time t, simulate a random number according to the

discrete distribution with the probability being {pd2
i } in

(12), and determine the next event index i.

(a) If i = 0. A new ribosome enters and occupies
codons from 1 to r if they are empty; otherwise
do nothing;

(b) i = n. The last r codons become empty if they
are occupied; otherwise do nothing;

(c) i ̸= 0, n. The ribosome hops from i to i + 1 if
codon i is occupied and i + 1 empty; otherwise
do nothing.

3. Let t = t + )t′ and repeat Step 2.

The PBN model
The derivation of the PBN model is based on Algorithm 6
with the random-sequential update rule. As shown above,
all the simulation algorithms with the same random-
sequential update rule are statistically equivalent and
therefore the choice of the underlying algorithm does not
limit the PBN model in any sense. The PBN model with
the parallel update rule is ongoing work and will not be
discussed here. We first present some background and
preliminary details on the PBN model and then discuss
how the various events are represented in this setting.

In order to derive the PBN model, one must be able
to first express the mRNA state as the state in a Boolean
network and then the update events as Boolean functions
governing the dynamics of the Boolean network. Con-
ceptually this can be readily done as the mRNA codon
state is indeed Boolean (a codon being covered or uncov-
ered by a ribosome constitute its two Boolean states).
However, historically no efficient tools for Boolean net-
works have been available, which may be a reason why this
seemingly straightforward PBN model for mRNA trans-
lation has not been discussed before. In what follows,
we show that based on a recently developed tool based
on the “semi-tensor product”, Boolean networks can be
represented as linear discrete systems, and consequently
the mRNA translation process can be modelled as a PBN
which can be rigorously formulated and computationally
solvable.

The matrix representation of Boolean networks
A Boolean network is the dynamic interactions of multiple
Boolean nodes where each node can be one of the only
two possible states, thus making 2n different states for the
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whole network. A Boolean network with n nodes can be
generally represented as follows,

⎧
⎪⎨

⎪⎩

x1(t + 1) = f1(x1(t), . . . , xn(t))
...

xn(t + 1) = fn(x1(t), . . . , xn(t))
where xi, i = 1, . . . , n represent the nodes, and the dynam-
ics of the nodes are governed by the Boolean functions
fi, i = 1, . . . , n.

Boolean networks are typically analysed using truth
tables, i.e., tables listing all the possible one step state
change caused by the Boolean functions. This approach of
analysis is evidently not a powerful one but has however
been the only one for a long time before the introduc-
tion of the matrix representation of Boolean networks
based on the so-called semi-tensor product in recent years
[82,83].

The semi-tensor product is an extended matrix product.
For matrices X and Y with any dimensions r1 × c1 and
r2 × c2, the semi-tensor product of X and Y, denoted by
X ! Y , is defined as follows,

X ! Y := (X ⊗ Ilcm(c1,r2)/c1) × (Y ⊗ Ilcm(c1,r2)/r2) (16)
where lcm(c1, r2) is the least common multiple of c1 and
r2, ⊗ is the Kronecker product and × is the normal matrix
product.

The most interesting aspect of the semi-tensor prod-
uct in this context is, with it Boolean networks can be
represented in a matrix form. Specifically, mapping logi-
cal “TRUE” and “FALSE” to δ1

2 and δ2
2, respectively, where

δk
n generally represents the kth column of the identity

matrix with dimension n, then for any Boolean function
f (x1, x2, . . . , xn), a unique matrix M with 2n columns and
the columns being chosen from δ1

2 and δ2
2, called the

structure matrix of f, exists and
f (x1, x2, . . . , xn) = M !n

i=1 xi (17)
That is, any Boolean function can be uniquely identified

by and equivalently treated with its structure matrix [83].
This provides a succinct and systematic way of represent-
ing the network, which can be systematically augmented.
Additionally this representation provides new tools for
analysis of attractors of deterministic analogues of such
networks.

Therefore, let x(t) := !n
i=1xi(t) and the Boolean net-

work can then be equivalently written as
⎧
⎪⎨

⎪⎩

x1(t + 1) = L1x(t)
...

xn(t + 1) = Lnx(t)
where Li is the structure matrix corresponding to function
fi. This further leads to

x(t + 1) = Lx(t) (18)

where L = L1∗L2∗. . .∗Ln and ∗ is the Khatri-Rao product.
That is,

Coli(L) = !n
j=1Coli(Lj), i = 1, . . . , 2n

where Coli(L) is the ith column of L. That is, a Boolean
network based on the logical rules is equivalent to a linear
system in (18) and is completely described by the structure
matrix L.

Finally, a Boolean network becomes a probabilistic one,
i.e. a PBN, if the dynamics of the network is proba-
bilistically determined, i.e., its structure matrix L can be
chosen from a set of possible candidates (L) with certain
probabilities (P),

P{L = L′} = p′, L′ ∈ L, p′ ∈ P (19)

where ∑
p′∈P p′ = 1.

The Boolean network description of the update events
In this subsection, we discuss how the various events
in the translation process may be described in Boolean
terms. The three types of the update events in Algorithm 6
can be described as Boolean functions associated with
the Boolean network consisting of the mRNA state x.
As mentioned earlier, as long as we are able to formally
describe the update events as Boolean functions (i.e., (20),
(21) and (22)), their matrix representations can then be
transformed automatically with the semi-tensor product
toolbox [56]. Therefore in what follows we focus only
on the Boolean expression of the update events but not
their further calculations within the semi-tensor product
framework.

The following logical operators are used to describe the
Boolean functions: ∧ for conjunction, or logical AND; ∨
for disjunction, or logical OR and ¬ for negation, or logical
NOT. Note that for r > 1, the mRNA state space does not
contain all the 2n Boolean states. Denote the set of all the
possibly allowed mRNA states for a specific pair of n and
r by M(n, r) := {χi} (shorted by M). Then the following
discussions are for the mRNA states in M only.

1. Entry: A new ribosome may attach the leftmost of
the mRNA if and only if the first r codons are free.
For the mRNA states in M, this condition is
equivalent to that the rth codon is empty since such
mRNA states with the rth codon being empty and
any codon between 1 to r − 1 being occupied are not
allowed. This may be succinctly encoded in Boolean
terms. The Boolean function for the entry event f⃗0
can thus be written as follows,
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f⃗0 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = ¬xr(t) ∨ x1(t)
...

xr(t + 1) = ¬xr(t) ∨ xr(t)
xr+1(t + 1) = xr+1(t)

...
xn(t + 1) = xn(t)

(20)

The Boolean function f⃗0 ensures that the first r
codons will be occupied (a new ribosome enters) at
time t + 1 if the rth codon is empty (the first r
codons are empty) at time t, and the first r codons
keep unchanged (no ribosome enters) at time t + 1 if
the rth codon is occupied (a ribosome is present
somewhere that prevents a new ribosome to enter) at
time t. Therefore, this Boolean function agrees with
the dynamics of the entry event e0 in Algorithm 6.

2. Exit: A ribosome dissociates from the rightmost of
the mRNA if and only if the last r codons are
occupied. For the mRNA states in M, this condition
is equivalent to that the last codon is occupied since
such mRNA states with the last codon being occupied
and any of the codons from n − r + 1 to n − 1 being
empty are not allowed. The Boolean function for the
exit event f⃗n can thus be written as follows,

f⃗n :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = x1(t)
...

xn−r(t + 1) = xn−r(t)
xn−r+1(t + 1) = ¬xn(t) ∧ xn−r+1(t)

...
xn(t + 1) = ¬xn(t) ∧ xn(t)

(21)

The Boolean function f⃗n ensures that the last r
codons will be empty (the ribosome dissociates from
the mRNA) at time t + 1 if the last codon is occupied
(a ribosome is ready to exit) at time t, and the last r
codons will keep unchanged at time t + 1 if the last
codon is empty (no ribosome is ready to exit) at time
t. Therefore, this Boolean function agrees with the
dynamics of the exit event en in Algorithm 6.

3. Hops: A ribosome with its head at codon j can move
one codon towards its right if and only if the codons
from j − r + 1 to j are occupied and codon j + 1 is
empty. For the mRNA states in M, this condition is
equivalent to that codon j is occupied and codon j+1
is empty since such mRNA states with codon j being
occupied, codon j + 1 being empty and any of the
codons between j − r + 1 to j − 1 being empty are not
allowed. The Boolean function for the hopping event
from codon j to j+1, f⃗j, can then be written as follows,

f⃗j :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = x1(t)
...

xj−r(t + 1) = xj−r(t)
xj−r+1(t + 1) = (¬xj(t) ∨ xj+1(t)) ∧ xj−r+1(t)
xj−r+2(t + 1) = xj−r+2(t)

...
xj(t + 1) = xj(t)
xj+1(t + 1) = (xj(t) ∧ ¬xj+1(t)) ∨ xj+1(t)
xj+2(t + 1) = xj+2(t)

...
xn(t + 1) = xn(t)

(22)

The Boolean function f⃗j ensures that codon j − r + 1
will be empty and codon j + 1 will be occupied (a
ribosome with its head at codon j hops one codon
ahead) at time t + 1 if codon j is occupied and codon
j+1 is empty (a ribosome with its head at codon j can
hop one codon ahead) at time t, and the codons from
j − r + 1 to j + 1 will keep unchanged (no hopping
event ej occurs) at time t + 1 if either codon j is
empty or codon j + 1 is occupied (no ribosme with its
head at codon j is ready to hop one codon ahead) at
time t. Therefore, this Boolean function agrees with
the dynamics of the hopping event ej in Algorithm 6.

The above Boolean functions thus constitute the
Boolean descriptions of the update events, Fn,r := {f⃗i, i ∈
Ie}. From the semi-tensor product theory, each Boolean
function f⃗i, i ∈ Ie is equivalent to a structure matrix Li, i ∈
Ie, thus making a set of structure matrices Ln,r := {Li, i ∈
Ie} being a complete description of the update events.
Notice that the Boolean functions determined here are
independent of the time steps and the event occurrence
probabilities.

The PBN model for mRNA translation
According to Algorithm 6, the next update event is
selected probabilistically, and therefore the update events,
i.e., the structure matrices Ln,r are associated with the
corresponding probabilities Pn,r := {pd2

i |i ∈ Ie} as given
in (12). Then the dynamics of the mRNA state can be
described by a PBN, as follows,

x(t + 1) = Lxx(t), x ∈ M

where P{Lx = Li} = pd2
i , i ∈ Ie.

From the PBN theory [82], the mean dynamics gov-
erned by the above PBN model is of the form ⟨x(t + 1)⟩ =
LE⟨x(t)⟩, x(t) ∈ M and the stationary mean value of x,
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satisfies y = LEy where the probabilistic transition matrix
is given by

LE :=
∑

i∈Ie

pd2
i Li (23)

That is, LE is the average over all the possible update
events, weighted by their update probabilities.

Further, if we notice that for all x /∈ M, they are not
governed by the dynamics in (23) and do not affect the
system behaviour, then (23) can be reduced to the states in
M only. The transition matrix ME of the reduced system
is obtained by deleting from LE all the rows and columns
that do not belong to M,

ME = LE|Row(LE)∈M,Col(LE)∈M (24)
The reduced system is a Markov chain, where the state

i in the Markov chain is χi in the original system. ME can
also be obtained from the reduced structure matrix for
each event, Mi = Li|Row(Li)∈M,Col(Li)∈M in a similar way as
LE : ME := ∑

i∈Ie piMi.

Modeling added biological complexities with the PBN model
The PBN model can be accommodated with added bio-
logical complexities, as long as the added complexity
can be represented as Boolean functions. A new set of
Boolean functions and transition probabilities can then be
obtained and consequently the PBN model is constructed
without any particular difficulty. An example is shown as
follows.

• Modelling premature stop codon. At the premature
stop codon j, the ribosome can readthrough and then
proceed to the production of the full-length protein,
which is a normal hopping event described by the
Boolean function f⃗j. The ribosome can also dissociate
from codon j, which is a new update event, whose
Boolean function is denoted by f⃗jd . This Boolean
function can be written as follows,

f⃗jd :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = x1(t)
...

xj−r(t + 1) = xj−r(t)
xj−r+1(t + 1) = (¬xj(t) ∧ xj+1(t)) ∧ xj−r+1(t)

...
xj(t + 1) = (¬xj(t) ∧ xj+1(t)) ∧ xj(t)
xj+1(t + 1) = xj+1(t)

...
xn(t + 1) = xn(t)

(25)

The Boolean function f⃗jd ensures that the codons
from j − r + 1 to j will be empty (a ribosome with its
head at codon j dissociates from the mRNA) at time
t + 1 if codon j is occupied and codon j + 1 is empty

(the premature stop codon is occupied by the head of
a ribosome) at time t, and the codons from j − r + 1
to j will keep unchanged if either codon j is empty or
codon j + 1 is occupied (the premature stop codon is
not occupied by the head of a ribosome) at time t.
Therefore, this Boolean function agrees with the
dynamics of the premature termination event ejd .
Then, to model the premature stop codon with the
PBN model, an extra Boolean function corresponding
to the premature termination event is added to the
set of the structure matrices, with also modified event
probabilities for the premature termination event and
the readthrough event. The PBN model can be
constructed as usual with these modified set of
structure matrices and corresponding probabilities.
No particular difficulties are caused for the PBN
model by the introduction the premature stop codon.
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